Title:
"Present
changes and
requested
stability of a
tropical forest
in South-East
Asia"

Management
New criterion

JUNBA 2009 – Next Step to a Greener Earth

Technology Fair
Session B-1:
Environmental
Issues

Natural impacts

Dry weather

Human impacts

Logging

Tsuyoshi Yoneda Kagoshima University 13 January, 2009 Marriott San Francisco Airport, Burlingame

Location of research area

Severe dry weather in 90's

Changes of monthly rainfall at Tabing, Padang

Responses in mortality to dry weather

Quick responses of pioneer species

Figure 1.13. Remaining forest in 1996.

After Conservation Science Program—World Wildlife Fund-U.S.A.

Reduction of forest structure

Observation at 6.6-ha PB plot in Ulu Gadut

Reduction of biomass in an average value and its spatial homogeneity

Deterioration of guild compsition

SSF: Soft wood + Small tree in max. size + Fast growth rates
SBF: Soft wood + Big tree in max. size + Fast growth rates
HBS: Hard wood + Big tree in max. size + Slow growth rates
HSS: Hard wood + Small tree in max. size + Slow growth rates

Frequent disturbance could cause loss of HBS and HSS species adapting to long-life span under the stable conditions.

New logging rotation basing on economical and environmental functions

- E(t): an integrated new parameter of economic and environmental functions of a forest named E-Index
- B(t): biomass at t years after clear cutting
- B_{max} : the maximum value of B(t) throughout the growth process
- G(t): an average growth rate of biomass during t years after clear cutting as G(t)=B(t)/t
- G_{max} : the maximum value of B(t) throughout the growth process
- c: a parameter showing the relative importance of biomass against growth rates

New logging rotation vs old one

TG_{max}: Rotation of Maximum Volume Production

 TE_{max} : Rotation of Maximum Eco-Function

Evaluation of proposed logging rotation

Comparison between properties of the E-Index at TE_{max} and TG_{max} . Ratio of the properties at TE_{max} and TG_{max} is shown for different conditions of parameter c, relative importance of biomass against growth rate. TE_{max} was determined by numerical calculation from Eqs. (2) and (3) at k = 99. These ratios tend to be constant irrespective of λ value of Eq. (3).

Properties	c = 0	<i>c</i> = 1	<i>c</i> = 2	c = 10
Cutting age, TEmax/TGmax	1	1.14	1.24	1.50
Biomass, $B(TE_{max})/B(TG_{max})$	1	1.10	1.14	1.18
Growth rate, $G(TE_{max})/G(TG_{max})$	1	0.97	0.92	0.79
Average biomass, $\frac{\int_0^{TE_{\text{max}}} B(t) dt}{TE_{\text{max}}} / \frac{\int_0^{TG_{\text{max}}} B(t) dt}{TG_{\text{max}}}$	1	1.23	1.36	1.67

(2)

(3)

When we evaluate environmental functions with average biomass, new rotation at c=1 could produce 123% environmental functions at only 3% economic expenses.

Mt. Kerinci: the highest mountain in Sumatra Island (3805m)